Communication Dans Un Congrès Année : 2019

Hybrid topological location and mapping for autonomous agricultural robots

L. Emmi
  • Fonction : Auteur
J. Dufour
  • Fonction : Auteur
M. Devy
  • Fonction : Auteur

Résumé

This paper considers the problem of autonomous navigation in an agricultural field. It proposes a localization and mapping framework based on semantic place classification and key location estimation, which together build a hybrid topological map. The approach has been assessed through off-line data, recorded in real conditions, on diverse fields, at different seasons. The results have shown the interest of the approach, which allows: (i) simple and easy-to-update map to be obtained; (ii) the use of artificial landmarks to be avoided, thus (iii) autonomy of agricultural robots to be improved.
Fichier principal
Vignette du fichier
Hybrid topological localization and mapping for autonomous agricultural robots final.pdf (370.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04909409 , version 1 (23-01-2025)

Identifiants

Citer

L. Emmi, J. Dufour, Viviane Cadenat, M. Devy. Hybrid topological location and mapping for autonomous agricultural robots. European Conference on Precision Agriculture, Jul 2019, Montpellier, France. pp.767-774, ⟨10.3920/978-90-8686-888-9_95⟩. ⟨hal-04909409⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More