
HAL Id: hal-03008349
https://psl.hal.science/hal-03008349v1

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Multithreaded event-chain Monte Carlo with local times
Botao Li, Synge Todo, A. Maggs, Werner Krauth

To cite this version:
Botao Li, Synge Todo, A. Maggs, Werner Krauth. Multithreaded event-chain Monte Carlo with
local times. Computer Physics Communications, 2021, 261, pp.107702. �10.1016/j.cpc.2020.107702�.
�hal-03008349�

https://psl.hal.science/hal-03008349v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Multithreaded event-chain Monte Carlo with local times

Botao Lia, Synge Todob,c, A. C. Maggsd, Werner Krautha,∗

aLaboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS,
Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France

bDepartment of Physics, University of Tokyo, 113-0033 Tokyo, Japan
cInstitute for Solid State Physics, University of Tokyo, 277-8581 Kashiwa, Japan

dCNRS UMR7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris,
France

Abstract

We present a multithreaded event-chain Monte Carlo algorithm (ECMC) for
hard spheres. Threads synchronize at infrequent breakpoints and otherwise scan
for local horizon violations. Using a mapping onto absorbing Markov chains,
we rigorously prove the correctness of a sequential-consistency implementation
for small test suites. On x86 and ARM processors, a C++ (OpenMP) im-
plementation that uses compare-and-swap primitives for data access achieves
considerable speed-up with respect to single-threaded code. The generalized
birthday problem suggests that for the number of threads scaling as the square
root of the number of spheres, the horizon-violation probability remains small
for a fixed simulation time. We provide C++ and Python open-source code
that reproduces all our results.

Program title: ParaSpheres

Licensing provisions: GNU GPLv3

Programming languages: Python 3, C++, Fortran90

Nature of problem: Multithreaded Event-chain Monte Carlo for hard spheres.

Solution method: Event-driven irreversible Markov-chain Monte Carlo algo-
rithm using local times.

Additional comments: The collection of programs is complete with shell
scripts that allow one to reproduce all data, and all the figures of the paper.
Change of density and system size is straightforward. The manuscript is
accompanied by a frozen copy of the GitHub repository that is made pub-
licly available on GitHub (repository https://github.com/jellyfysh/

ParaSpheres, commit hash e2aa5b9727fb080ebe65581586c0f6133efa495d).

∗Corresponding author, email address: werner.krauth@ens.fr

Preprint submitted to Elsevier October 8, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0010465520303453
Manuscript_214b18ba88bd5b54367e8731e19b5f54

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0010465520303453
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0010465520303453

Keywords: Monte Carlo algorithm, irreversible Markov chain, multithreading,
event-chain algorithm, sequential consistency model, C++, Python, Fortran90.

1. Introduction

Event-chain Monte Carlo (ECMC) [1, 2] is an event-driven realization of a
continuous-time irreversible Markov chain that has found applications in sta-
tistical physics [3, 4] and related fields [5]. Initially restricted to hard spheres
and to models with piece-wise constant pair potentials [6], ECMC was subse-
quently extended to continuous potentials, such as spin models and all-atom
particle systems with long-range interactions [7, 8]. Potentials need not be pair-
wise additive [9]. In opposition to standard Monte Carlo methods, such as the
Metropolis algorithm [10], ECMC does not evaluate the potential U(x) of a
configuration x (nor any ratio of potentials) in order to sample the Boltzmann
distribution π(x) = exp [−βU(x)], with inverse temperature β.

For hard spheres, ECMC is a special case of event-driven molecular dy-
namics [11, 12]. In molecular dynamics, usually all N spheres have non-zero
velocities, and the number of candidate collision events at any time is O (N). A
central scheduler, efficiently implemented through a heap data structure, yields
the next collision with computational effort O (1), and it updates the heap in
at most O (logN) operations [13, 14]. Event times are global, and the CPU
clock advances together with the collision times. The global collision times
and the required communications at events complicate multithread implemen-
tations [15, 16, 17, 18, 19]. Domain decomposition, another strategy to cope
with synchronization, is also problematic [20].

In hard-sphere ECMC, a set At of k < N “active” spheres (all of radius σ)
have the same non-zero velocity v that changes infrequently. All other spheres
are “static”. At a lifting [21] lt = ([i→j], (x,x′), t), an active sphere i collides
at time t with a target sphere j at contact (|x′ − x| = 2σ, a condition that
must be adapted for periodic boundary conditions). The lifting lt connects an
in-state (the configuration just before time t, at time t−) with an out-state (the
configuration just after time t, at time t+):

in-state :

i ∈ At− , j 6∈ At−
xi(t

−) = x

xj(t
−) = x′

vi(t
−) = v

vj(t
−) = 0

 ; out-state :

∣∣∣∣∣∣∣∣∣∣∣∣

i 6∈ At+ , j ∈ At+
xi(t

+) = x

xj(t
+) = x′

vi(t
+) = 0

vj(t
+) = v

∣∣∣∣∣∣∣∣∣∣∣∣
. (1)

We consider in this paper two-dimensional spheres in a square box with pe-
riodic boundary conditions. In this system, the direction of v must be changed
at certain breakpoints for the algorithm to be irreducible [22]. However, we
restrict our attention to ECMC in between two such breakpoints h and h′ with,
for concreteness, v = (vx, vy) = (1, 0). For a generic “lifted” [21] initial con-
figuration {Ch,Ah} at h, ECMC is deterministic up to h′. Generically no two

2

liftings take place at the same time t, so that they can be identified by their
time.

Our multithreaded ECMC algorithm propagates k = |A| active spheres in
independent threads, with shared memory. In between h and h′, it only uses
local-time attributes of each sphere. At a lifting lti = ([i→ j], (x,x′), ti), j
synchronizes with i (the local time tj is set equal to ti). For a sphere i to
move, it must not violate certain horizon conditions of nearby spheres j. In the
absence of horizon violations between h and h′, multithreaded ECMC will be
proven equivalent to the global-time process.

The motivation for our work is twofold. First, we strive to speed up current
hard-sphere simulations where, typically, N ∼ 1×106. These simulations require
weeks or months of run time to decorrelate from the initial configuration [3, 23].
Using a connection to the generalized birthday problem in mathematics, we will
argue that such simulations can successfully run with k .

√
N . Our approach

to multithreading thus uses the freedom to tune the number of active spheres.
Second, by providing proof of concept for multithreaded ECMC algorithms, we
hope to motivate the development of parallel ECMC algorithms for other system
where sequential ECMC applies already.

The multithreaded ECMC algorithm is presented in two versions. One im-
plementation uses the sequential-consistency model [24]. Mapped onto an ab-
sorbing Markov chain, its correctness is rigorously proven for small test suites.
The C++ implementation uses OpenMP to map active chains onto hardware
threads, together with atomic primitives [25] for fine-grained control of interac-
tions between threads. Considerable speed-up with respect to a single-threaded
version is achieved. The few simultaneously moving spheres (k � N) avoid com-
munication bottlenecks between threads, even though each hard-sphere lifting
involves only little computation.

Subtle aspects of our algorithm surface through the confrontation of the
C++ implementation with the sequential-consistency computational model on
the same test suites. By reordering single statements in the code, we may for
example introduce rare bugs that are not detected during random testing, but
are readily exhibited in the rigorous solution, and that illustrate difficulties
stemming from possible compiler or processor re-ordering.

Code availability. Cell-based ECMC for two-dimensional hard spheres is im-
plemented (in Fortran90) as CellECMC.f90. Our version is slightly modified
from two original programs made available in a Fortran90/Historic directory,
written by E. P. Bernard (see Acknowledgements). The code prepares initial
configurations. It is used in validation scripts.

2. Algorithms: from global-time processes to multithreaded ECMC

In this section, we start with the definition of a continuous-time process, Al-
gorithm 1, that is manifestly equivalent to molecular dynamics with the collision
rules of eq. (1). Its event-driven version, Algorithm 2, provides the reference set
Lref of liftings used in our validation scripts (see Section 3). The single-threaded

3

Algorithm 3 relies on local times. It has correct output if no horizon violation
takes place. Its event-driven version, Algorithm 4, yields a practical method
that can be implemented and tested. Algorithms 5 and 6 realize multithreaded
ECMC, the latter in a highly efficient C++ implementation.

2.1. Continuous processes and ECMC with global time

Algorithm 1 (Continuous process with global time). At global time t = h, an
initial lifted configuration {Ch,Ah} is given (vi = v = (1, 0) ∀i ∈ Ah and vi =
0 ∀i 6∈ Ah). All spheres i carry local times ti, with, initially, ti(h) = h ∀i. For
active spheres (i ∈ At), dti/dt = 1. At a lifting lt = ([i→j], (x,x′), t) the local
time of sphere j is updated as tj(t

+) = t and, furthermore, At+ = At−\{i}∪{j}.
The algorithm stops at global time t = h′, and outputs the lifted configuration
{Ch′ ,Ah′}, and the set Lh′ = {lt : h < t < h′} of liftings that have taken place
between h and h′.

Remark 1 (Meaning of local times). In Alg. 1, the local time ti(t) is a function
of the global time t. It gives the global time at which sphere i was last active
(or ti(t) = h if i was not active for [h, t]). Therefore ti(t) = t ∀i ∈ At and
ti(t) < t ∀i 6∈ At.

Remark 2 (Positivity of local-time updates). In Alg. 1, at any lifting lt, the
update of tj is positive: tj(t

+)− tj(t−) > 0.

Remark 3 (Time-reversal invariance). Alg. 1 is deterministic and time-reversal
invariant: If an initial lifted configuration {Ch,Ah} generates the final lifted
configuration {Ch′ ,Ah′} with v, then the latter will reproduce the initial config-
uration with −v. The set L of liftings is the same in both cases (with exchanged
i and j).

In order to converge towards a given probability distribution, Markov-chain al-
gorithms must satisfy the global-balance condition. It states that the probability
flow into a configuration C (summed over all liftings A) must equal the proba-
bility flow out of it [22]. ECMC balances these flows for each lifting individually
(for the uniform probability distribution).

Lemma 1. Alg. 1 satisfies the global-balance condition for any lifted configura-
tion {C,A}. All lifted configurations accessible from a given initial configuration
thus have the same statistical weight.

Proof. The algorithm is equivalent to molecular dynamics that conserves one-
dimensional momenta as well as the energy. The claimed property follows for
Alg. 1 because it is satisfied by molecular dynamics. The property can be shown
directly for a discretized version of Alg. 1 on a rectangular grid aligned with
v with infinitesimal cell size such that each lifted configuration {C,A} has a
unique predecessor. The flow into each lifted configuration equals one. This is
equivalent to global balance for the uniform probability distribution.

The event-driven version of Algorithm 1 is the following:

4

Algorithm 2 (ECMC with global time). With input as in Alg. 1, in each
iteration I = 1, 2, . . . , the next global lifting time is computed as tI+1 = tI +
mini∈A,j 6∈A τij,

1 where τij is the time of flight from sphere i to sphere j. At time
tI , local times and positions of active spheres are advanced to t̃ = min (tI+1, h

′),
and to xi(tI+1) = xi(tI) + (t̃ − tI)v, respectively. If t̃ = tI+1 (a lifting lI+1 =
({i, j}, {x,x′}, tI+1) takes place), the set of active spheres is updated as AI+1 =
AI \{i}∪{j}. Otherwise t̃ = h′, and the algorithm stops. Output is as in Alg. 1.

Code availability. Alg. 2 is implemented in GlobalTimeECMC.py and invoked
in several validation scripts, for which it generates the reference lifting sets Lref.

2.2. Single-threaded processes and ECMC with local times

Algorithm 3, that we now describe, is a single-threaded emulation of our mul-
tithreaded Algorithms 5 and 6. A randomly sampled active chain ι ∈ {1, 2, . . . }
advances (in what corresponds to a thread) for an imposed duration, at most un-
til its local time reaches h′. On thread ι, the active sphere i must remain above
the horizons of its neighboring spheres j (see Fig. 1a). The horizon condition is

ti + τij > tj , (2)

where the time of flight is τij = xj − xi + bij , with bij the contact separation
parallel to v between spheres i and j. The horizon condition must be checked
for at most three spheres j for a given i because all other spheres are either
too far for lifting with i in the direction perpendicular to v or are prevented
from lifting with i by other spheres (see Section 3.1). The algorithm aborts if a
horizon violation is encountered. The active chain ι stops if a lifting would be
to a sphere j that is itself active. The active chain ι+ 1 is then started.

Remark 4 (Double role of horizon condition). The horizon condition of eq. (2)
has two roles. First, it is a necessary condition for a lifting of i with j (if it
effectively takes place) to produce the required positive local-time update of tj at
the lifting time t (see Remark 2 and Fig. 1a). Second, it is a sufficient non-
crossing condition for any sphere k, ensuring that k was not at a previous local
time in conflict with i (see Fig. 1b).

It is for the second role discussed in Remark 4 that the horizon condition is
checked for all neighboring spheres j of an active sphere i.

Remark 5 (False alarms from horizon condition). The horizon condition may
lead to false alarms (see Fig. 1b), which could be avoided through the use of the
non-crossing condition. The latter is more difficult to check, as it requires the
history of past liftings. Our algorithms only implement the horizon condition.

1 τij is infinite if i cannot lift with j for the given initial configuration C and velocity v.
The presence of an arrow [i→j] in the directed constraint graph G indicates that τij can be
finite (see Section 3.1).

5

1

2

3

a
4

b() ()

1

2

3

Figure 1: Horizon condition and non-crossing condition in local-time algorithms. (a): Sphere
i is above the horizon of sphere j (shaded area), so that at the lifting of i with j, the local-time
update of tj is positive. (b): Sphere i does not lift with k. It does not cross the past trajectory
of k, although it violates the horizon condition with k (light shading) (supposing bik = 0).
The lifting of i with j could in principle be allowed under the non-crossing condition with k
(dark blue shading), supposing τjk =∞.

Algorithm 3 (Single-threaded continuous process with local times). With input
as in Alg. 1, active chain ι = 1, 2, . . . is initialized (sequentially) with an active
sphere i, sampled from Ã = {i ∈ A, ti 6= h′}, and for a local-time interval
τmax
ι = min (ran, h′ − ti), where ran is a positive random number. In active

chain ι, the active sphere i moves with velocity v for τ ∈ [0, τmax
ι] and dti/dτ =

1, if the horizon condition of eq. (2) is satisfied for all spheres j. (In case of
a horizon violation, the algorithm aborts.) If a lifting lti = ([i→j], (x,x′), ti)
concerns an active sphere j, the active chain ι stops with i at x. Otherwise, the
local time of sphere j is updated as tj(t

+
i) = ti and A = A \ {i} ∪ {j}, with the

active chain ι now moving j. The algorithm terminates if Ã = ∅, that is, if all
the active spheres are stalled. Output is as for Alg. 1.

Remark 6 (Stalled spheres). “Stalled” spheres (active spheres i with ti = h′)
make up the set A \ Ã. Considering stalled spheres separately simplifies the
sampling of Ã and the restart from h′ for the next leg of the ECMC run.

Lemma 2. If Alg. 3 terminates without a horizon violation, its output is iden-
tical to that of Alg. 1.

Proof. We consider the final lifted configuration {Ch′ ,Ah′} of a run that has
terminated without a horizon violation, and that has preserved a log of all local-
time updates. The termination condition is Ã = ∅, so that all active spheres
are stalled with local time h′. We further consider the final lifting lh′′ in Lh′ (so
that t < h′′ ∀ lt ∈ Lh′′). Local times of static spheres satisfy ti ≤ h′′ ∀i 6∈ Ah′ .
When backtracking, using Alg. 1 with −v, from h′ to h′′+, no lifting takes place
among active spheres (see Fig. 2a). The area swept out by the active spheres
cannot overlap with a static sphere j because it must have tj < h′′ (local times
are smaller than the last lifting) and, on the other hand, tj > h′′, because of
eq. (2) (see Fig. 2b). The lifting lh′′ = ([i→j], (x,x′), h′′) can now be undone.

6

(From j ∈ Ah′ and i 6∈ Ah′ , we obtain Ah′′ = Ah′ \ {j} ∪ {i}. The updated
local time tj(h

′′−) can be reconstructed from the log. It is smaller than h′′. The
lifting is then itself eliminated: Lh′′ = Lh′ \ {lh′′}.) All active spheres at h′′−

now have local time h′′. Similary, all liftings can be undone, effectively running
Alg. 2 with −v from h′ to h. As Alg. 1 is time-inversion invariant, the local
times at its liftings are the same as those of Alg. 3.

tj
h''h''

: k

: l

: j
a b

h'h'h''h''
h''h''

h'h'
h'h'

tj
τ~

() ()

Figure 2: Backtrack using Alg. 1 from the final configuration of Alg. 3. (a): Active spheres
k and l do not lift among each other. (b): A static sphere j crossing the trajectory of active
sphere k. This crossing is impossible because of the horizon condition (τ̃ < h′ − h′′ leading
to tj > h′′, in contradiction with the condition tj < h′′).

For concreteness, in the following event-driven formulation of Algorithm 3,
the local-time interval τmax

ι of an active chain ι is chosen equal to the time of
flight towards the next lifting.

Algorithm 4 (Single-threaded ECMC with local times). With input as in
Alg. 1, for each (sequential) active chain ι = 1, 2, . . . , an active sphere i is
sampled from Ã = {i ∈ A, ti 6= h′}. The horizon conditions of eq. (2) are
checked for all2 spheres j that can have finite time of flight τij. The algorithm
aborts if a violation occurs. Otherwise, i is moved forward to min (ti + τij , h

′),
and the local time of i and j are updated to that time. The active chain stops if
j is an active sphere or if the local time equals h′. Otherwise, the move corre-
sponds to a lifting lti+τij = ([i→j], (x,x′), ti + τij) and A = A \ {i} ∪ {j}, with

the active chain now moving j. The algorithm terminates if Ã = ∅. Output is
as for Alg. 1.

Code availability. Alg. 4 is implemented in SingleThreadLocalTimeECMC.py

and tested in the PValidateECMC.sh script.

Remark 7 (Partial validation). In Section 3.2, a variant of Alg. 4 is used to
validate part of a run, even if it does not terminate correctly. When a sphere
i detects a horizon violation, its time ti is recorded. At h′, the set Lt∗ of all
liftings up to the earliest horizon violation, at t∗, agrees with the corresponding
partial list of liftings for Alg. 1.

2.3. Multithreaded ECMC (sequential-consistency model)

Algorithm 5, the subject of the present section, is a model shared-memory
ECMC on k threads, that is, on as many threads as there are active spheres. The

2at most three spheres j can have finite τij for any i, see Section 3.1

7

algorithm adopts the sequential-consistency model [24]. We rigorously prove its
correctness for small test suites by mapping the multithreading stage of this
algorithm to an absorbing Markov chain. The algorithm allows us to show that
certain seemingly innocuous modifications of Algorithm 6 (the C++ implemen-
tation) contain bugs that are too rare to be detected by routine testing.

τ23τ23

τ13τ13''

τ13τ13''
τ13τ13''

τ23τ23

τ23τ23 τ34τ23τ23++τ34

τ34τ23τ23++τ34

τ34τ23τ23++τ34

τ23τ23

τ23τ23

τ23τ23 τ34τ23τ23++τ34

τ34τ23τ23++τ34

3ι 13ι
read position check position, thread a restart

: 1 : 2 : 3 : 4
a

b

()

()

τ23τ23

τ34τ23τ23++τ34

3ι
τ13τ13''
τ13τ13''

τ23τ23

τ23τ23 τ23τ23 τ23τ23

τ13τ13''

Figure 3: Alg. 5, as applied to the SequentialC4 test suite. (a): Reference set Lref from
Alg. 2. (b): Run of Alg. 5 involving a “lock-less” lock rejection on the position of sphere 3.

The algorithm has three stages. In the (sequential) initialization stage, it
inputs a lifted initial configuration and maps each active sphere to a thread.
This is followed by the multithreading stage, where each active chain progresses
independently, checking the horizon conditions in its local environment. The
algorithm concludes with the (sequential) output stage.

At each step of the multithreading stage of Algorithm 5, a switch randomly
selects one of the k statements (one for each thread a, b, . . .) contained in a
buffer as {nexta,nextb, . . .}. The selected statement is executed on the corre-
sponding thread, and then the buffer is updated. The random sequence of state-
ments mimics the absence of thread synchronization except at breakpoints. All
threads possess an absorbing wait statement. When it is reached throughout,
the algorithm progresses to the output stage, followed by successful termina-
tion. The program aborts when a thread detects a horizon violation. For our
test suites, we prove by explicit construction that each state is connected to
at least one of the absorbing states, but we lack a general proof of validity for
arbitrary configurations and general N .

In Algorithm 5, each sphere has three attributes, namely a tag, a local time
and a position. The sphere’s tag indicates whether it is active on a thread ι,
stalled, or static. All threads have read/write access to the attributes of all
spheres. A state of the Markov chain is constituted by the spheres with their
attributes, some local variables and the buffer content.

Algorithm 5 (Multithreaded ECMC (sequential-consistency model)). At break-
point h = 0, a lifted initial configuration {Ch,Ah} is input (see Fig. 3 for the
example with four spheres). All local times are set to h = 0, all tags are put
to static, except for the active spheres, whose tags correspond to their thread

8

ι. The buffer is set to {11, . . . , 1ι, . . . , 1k}. A random switch selects one buffer
element. The corresponding statement is executed on its thread, and the buffer
is replenished. The following provides pseudo-code for the multithreading stage
(iι is the active sphere, jι the target sphere, and distanceι the difference between
h′ and the local time, all on thread ι):

1ι τι ← distanceι; jι ← iι; xι ←∞
2ι for ̃ in {1, 2, ..., n} \ iι :
3ι x̃ ← ̃.x
4ι τĩ ← x̃ − iι.x− bĩ
5ι if iι.t+τĩ< ̃.t : abort
6ι if τĩ < τι :
7ι jι ← ̃
8ι xι ← x̃

9ι τι ← τĩ
10ι jι.tag.CAS(static, ι)
11ι if jι.tag = ι :
12ι if τι < distanceι :
13ι if xι = jι.x :
14ι jι.t← iι.t+ τι
15ι iι.t← iι.t+ τι
16ι iι.x← iι.x+ τι
17ι iι.tag ← static
18ι distanceι ← distanceι − τι
19ι iι ← jι

else :
20ι jι.tag ← static

goto 1
else :

21ι iι.t← iι.t+ τι
22ι iι.x← iι.x+ τι
23ι distanceι ← 0
24ι iι.tag ← stalled

else : goto 1
25ι if distanceι > 0 : goto 1
26ι wait

When all k threads have reached their wait statements, the algorithm proceeds
to its output stage. Output is as for Alg. 1.

Code availability. SequentialMultiThreadECMC.py implements Alg. 5. It
also constructs all states connected to the initial state and traces them to the
absorbing states. It is called by SequentialC4.sh and SequentialC5.sh

Remark 8 (Illustration of pseudocode). The multithreading stage of Alg. 5
corresponds to k identical programs running independently. In the sequential-
consistency model, the space of programming statements is thus k-dimensional

9

(one sequence (1ι, . . . , 26ι) per thread), and each displacement in this space pro-
ceeds along a randomly chosen coordinate axis. As an example, if for a buffer
{next1, . . . , nextι = 20ι, . . . , nextk} the switch selects thread ι, then the tag of
target particle jι is set to “static”, and the buffer is updated to {next1, . . . , nextι =
1ι, . . . , nextk}. The thread ι will thus be restarted at its next selection.

The compare-and-swap (CAS) statement in 10ι of Algorithm 5 amounts to a
single-line if. It is equivalent to: “if jι.tag = static : jι.tag = ι” (if j is static,
then it is set to active on thread ι (see Remark 9 for a discussion).

We prove correctness of Algorithm 5, for the SequentialC4 test suite with
N = 2 and k = 2 (see Fig. 3), that we later extend to the SequentialC5 test
suite with N = 5.

Lemma 3. If Alg. 5 terminates without a horizon violation, its output (for the
SequentialC4 test suite) is identical to that of Alg. 1.

Proof. In the SequentialC4 test suite with threads “a” and “b”, we suppose
that the switch samples a and b with equal probabilities. The two-thread stage
of Alg. 5 then consists in a finite Markov chain with 3670 states Sn that are
accessible from the initial state. The abort state has no buffer content. All
other 3669 states comprise the buffer {nexta,nextb}, the sphere objects (the
spheres and their attributes: tag, local time, position), and some thread-specific
local variables. One iteration of the Markov chain (selection of nexta or nextb,
execution of the corresponding statement, buffer update) realizes the transition
from Sn to a state Sm with probability Tnm = 1/2. The 3670× 3670 transition
matrix T = (Tnm) has unit diagonal elements for the abort, and for the unique
terminate state with buffer {26a, 26b}, which are both absorbing states of the
Markov chain. Furthermore, we can show explicitly that all 3670 states have a
finite probability to reach an absorbing state in a finite number of steps. This
proves that the Markov chain is absorbing. For an absorbing Markov chain, all
states that are not absorbing are transient, and they die out at large times. The
algorithm thus either ends up in the unique terminate state that corresponds
to successful completion, or else in the abort state.

All states of the Markov chain may be projected onto their buffer {nexta,nextb}
and visualized (see Fig. 4)).

Remark 9 (CAS statement). The CAS statements (see 10ι in Alg. 5) acquire
their full meaning in the multithreaded Alg. 6 The way in which they differ from
simple if statements can already be illustrated in the simplified setting. We sup-
pose two threads a and b. Then, with jι the target sphere on thread ι, a buffer
content {10a, 10b}:

...
...

10a ja.tag.CAS(static, a)
11a if ja.tag = a :

...
...

...
...

10b jb.tag.CAS(static, b)
11b if jb.tag = b :

...
...

10

Figure 4: The 3670 states in Alg. 5 for the SequentialC4 test suite projected onto the buffer
content {nexta,nextb} (see Fig. 3). The terminate buffer {26a, 26b} corresponds to a single
state.

can belong to a state with ja = 3 = jb = 3.3. If the statement 10a is selected,
sphere 3 becomes active on thread a (through the statement 3.tag = a). In con-
trast, if the switch selects 10b, sphere 3 becomes active on thread b. The program
continues consistently for both switch choices, because the selection is made in
a single (“atomic”) step on each thread and because the sequential-consistency
model avoids conflicting memory assignments. In contrast, if the switch selec-
tion from {10a, 10b} is split as:

...
...

10′a if ja.tag = static :
10′′a ja.tag = a
11a if ja.tag = a :

...
...

...
...

10′b if jb.tag = static :
10′′b jb.tag = b
11b if jb.tag = b :

...
...

the sequence 10′a→ 10′b→ 10′′a→ 11a→ 10′′b→ 11b results in sphere 3 first
becoming active on thread a (and the thread continuing as if this remained the
case), and then on thread b, which is inconsistent. In Algorithm 6, the C++
implementation of multithreaded ECMC, the CAS likewise keeps this selection
step atomic, and likewise excludes memory conflicts among all threads during
this step. It thus plays the role of a lightweight memory lock.

Algorithm 5 features lock-free programming, which is also a key ingredient of
Algorithm 6.

3This corresponds to the lifted configuration of Fig. 3h

11

Remark 10 (Lock-free programming). To illustrate lock-free programming in
Alg. 5, we consider two threads, a and b.

7a ja ← ̃
8a xa ← x̃

...
...

10a ja.tag.CAS(static, a)
...

...
13a if xa = ja.x :

...
...

...
...

16b ib.x← ib.x+ τb
17b ib.tag ← static

...
...

The identification of the target sphere ja on thread a (statements 7a and 8a)
would be compromised if, before locking through the CAS statement at 10a, it
was changed in thread b, where the same sphere ib is active (see statements
16b, 17b). However, the statement 13a checks that sphere ja has not moved. If
this condition is not satisfied, the thread a will be restarted (through statement
20a). (See also Remark 12.)

2.4. Multithreaded ECMC (C++, OpenMP implementation)

Algorithm 6, discussed in this section, translates Algorithm 5 into C++
(OpenMP). The CAS statement and lock-free programming assure its efficiency.
A sphere’s attributes are again its position, its local time, and its tag. The latter
is an atomic variable. We refer to line numbers in Algorithm 5.

Algorithm 6 (Multithreaded ECMC (C++, OpenMP)). With initial values
as in Alg. 1, thread management is handled by OpenMP. The number of threads
can be smaller than the number of active spheres. The multithreading stage
transliterates the one of Alg. 5. Statement 2ι of Alg. 5 is implemented through
a constraint graph (see Section 3.1). Statements 10ι through 13ι are expressed
as follows in MultiThreadECMC.cc:

10ι → j->tag.compare_exchange_strong(...static,...

11ι → if (j->tag.load(memory_order) == iota)

12ι → if (tau < distance)

13ι → if (x == j->x),
where the memory_order qualifier may take on different values (see Section 3.2).
Important differences with Alg. 5 are discussed in Remarks 11 and 12. Output
is as for Alg. 1.

Code availability. Alg. 6 is implemented in MultiThreadECMC.cc. It is exe-
cuted in several validation and benchmarking scripts (see Section 3.2).

Remark 11 (Active-sphere necklaces). Alg. 5 restarts thread ι if the target
sphere j (for an active sphere i on the thread) is itself active on another thread.
With periodic boundary conditions, active-sphere necklaces, where all target
spheres are active, can deadlock the algorithm. To avoid this, Alg. 6 moves
sphere i up to contact with j before restarting (this is also used in Alg. 4).

12

The source code of Algorithm 6 essentially translates that of Algorithm 5.
The compiler may however change the order of execution for some statements
in order to gain efficiency. (The memory access in modern multi-core processors
can also be very complex and, in particular, thread-dependent.) Attributes,
such as the memory_order qualifier in the CAS statement, may constrain the
allowed changes of order. The reordering directives adopted in Algorithm 6 were
chosen and validated with the help of extensive runs from randomly generated
configurations. However, subtle pitfalls escaping notice through such testing
can be exposed by explicitly reordering statements in Algorithm 5.

Remark 12 (Memory-order directives in Algs 5 and 6). In the SequentialC5

test suite with N = 5, interchanging statements 15ι and 16ι in Alg. 5 yields a
spurious absorbing state, and invalidates the algorithm. The same test suite can
also be input into Alg. 6, where it passes the Ordering.sh validation test, even
if the statements in MultiCPP.cc corresponding to 15ι and 16ι are exchanged.
However, a 1µs pause statement introduced in the C++ program between what
corresponds to the (interchanged) statements 15ι and 16ι produces a ∼ 1% error
rate, illustrating that Alg. 6 is unsafe without a protection of the order of the
said statements. Safety may be increased through atomic position and local time
variables, allowing the use of the fetch_add() operation to displace spheres.

3. Tools, validation protocols, benchmarks, and extensions

We now discuss the implementations of the algorithms of Section 2, as well
as their validation protocols, benchmarks, and possible extensions. We also
discuss the prospects of this method beyond this paper’s focus on the interval
between two breakpoints h and h′.

In our implementation of Algorithms 2, 4, and 6, a directed constraint graph
encodes the possible pairs of active and target spheres as arrows [i→ j] (see
Section 3.1). The outdegree of this graph is at most three, and a rough constraint
graph G(3) with, usually, outdegree three for all vertices is easily generated. G(3)
may contain redundant arrows that cannot correspond to liftings. Our pruning
algorithm eliminates many of them. We also prove that Gmin, the minimal
constraint graph, is planar. This may be of importance if disjoint parts of the
constraint graph are stored on different CPUs, each with a number of dedicated
threads. In general, we expect constraint graphs to be a useful tool for hard-
sphere production codes, with typically O (N) liftings between changes of v.

Validation scripts are discussed in Section 3.2. Scripts check that the liftings
of standard cell-based ECMC are all accounted for in the used constraint graph.
For the ECMC algorithms of Section 2, the set L of liftings provides the complete
history of each run, and scripts check that they correspond to Lref.

In Section 3.3, we benchmark Algorithm 6 and demonstrate a speed-up by
an order of magnitude for a single CPU with 40 threads on an x86 CPU (see
Section 3.3). The overhead introduced by multithreading (∼ 2.4) is very rea-
sonable. We then discuss possible extension of our methods (see Section 3.4).

13

3.1. Constraint graphs

For a given initial condition Ch and velocity v, arrows [i→j] of the constraint
graph Gv represent possible liftings lt = ([i→j], (x,x′), t) [26]. Arrows remain
unchanged between breakpoints because spheres i and j with a perpendicular
distance of less than 2σ cannot hop over one another (this argument can be
adapted to periodic boundary conditions), and pairs with larger perpendicular
distance are absent from G. All constraint graphs Gv are supersets of a minimal
constraint graph Gmin

v ≡ Gmin
−v (where the equivalence is understood as [i→j]v ≡

[j→i]−v).

Remark 13 (Constraint graphs and convex polytopes). Each arrow [i→j] of
the constraint graph Gv provides (for v = (1, 0)) an inequality

xi ≤ xj − bij (3)

that is tight (xi = xj−bij) when i lifts to j at contact (if there are configurations
C where it is tight, then [i→j] belongs to Gmin

v). The set of inequalities defines a
convex polytope. With periodic boundary conditions (unaccounted for in eq. (3)),
this polytope is infinite in the direction corresponding to uniform translation of
all spheres with v (see [26]).

Remark 14 (Constraint graphs and irreducibility). Rigorously, we define the
constraint graph Gmin

v as the set of arrows [i→j] that are encountered from Ch
by Alg. 1 (or, equivalently, Alg. 2) at liftings lt ∀t ∈ (−∞,∞). The liftings for
t < 0 can be constructed because of time-reversal invariance (see Remark 3).
For the same reason, we have Gmin

v ≡ Gmin
−v , and the set of arrows reached from

Ch is equivalent to that reached from any configuration that is reached from C
(and in particular Ch′). While we expect ECMC to be irreducible in the polytope
defined through the inequalities in eq. (3), we do not require irreducibility for the
definition of Gmin.

Between breakpoints, the active sphere i can lift to at most three other
spheres, namely the sphere j0 minimizing the time of flight τij in a corridor of
width 2σ around the center of i , and likewise the closest-by sphere j+ in the
corridors [σ, 2σ] and sphere j− in the corridor [−2σ,−σ] (see Fig. 5a). The set
of arrows {[i→j0], [i→j−], [i→j+] ∀i ∈ {1, . . . , N}} constitutes the constraint

graph G(3)v , which is thus easily computed. Except for small systems (where the
corridors may be empty), G(3) has outdegree three for all spheres i. However, its
indegree is not fixed. The constraint graph G(3) is not necessarily locally planar,4

and in the embedding provided by the sphere centers of a given configuration,
non-local arrows can be present (see Fig. 6a). However, Gmin can be proven to
be locally planar (see Fig. 6b)).

Lemma 4. The graph Gmin is locally planar, and any sphere configuration that
can be reached between breakpoints provides a locally planar embedding.

4“Locally planar” means that any subgraph that does not sense the periodic boundary
conditions is planar.

14

()

σ

σ

2σ

j

j j

[]

i,j

xi xj

yimpact
〈 〉

xi xl

i

xj xk

j,k
i

j
i

j k

l

a ()b()

()c

〈 〉

+

_

0

〈 〉

i,li j

j

j

i

+

_

0j

nextj

d

Figure 5: Constraint graphs, pruning, and planarity. (a): Corridors of an active sphere i,

with arrows [i→j−], [i→j0], and [i→j+] belonging to G(3)
(1,0)

. (b): Pruning of an arrow [i→j+]

through a sphere jnext without there being an arrow [i→jnext]. (c): Spheres i and j, arrow
[i→j], and impact path 〈i, j〉. Other spheres cannot cover 〈i, j〉. (d): Spheres i, j, k, l with
xi < · · · < xl and impact paths 〈i, l〉 and 〈j, k〉.

Proof. We first consider two spheres i and j for v = (1, 0) in the plane (without
taking into account periodic boundary conditions). The arrow [i→j] is drawn
by connecting the centers of i and j. The impact path 〈i, j〉 is the horizontal line
segment connecting (xi, y

impact) and (xj , y
impact) where yimpact is the vertical

position at which the two spheres can touch by moving them with v (see Fig. 5c).
If the arrow [i→j] exists, no other sphere can intersect the impact path 〈i, j〉.

For four spheres i, j, k, l, we now show that no two arrows between spheres
can cross each other. The x-values can be ordered as xi < xj < xk < xl
(again without taking into account periodic boundary conditions). Two arrows
between three spheres trivially cannot cross. For arrows between two pairs of
spheres, arrows [i→j] and [k→l] cannot cross. Likewise, if there is an arrow
[i→k], then sphere j must be on one side of the impact path 〈i, k〉, and k must be
on the other side of 〈j, l〉, so that arrows [i→k] and [j→l] cannot cross. Finally,
if arrow [i→l] exists, then j and k must be on the same side of the impact path
〈i, l〉 in order to have an impact path. But then, [j→k] cannot cross [i→l] (see
Fig. 5d).

The minimal constraint graph Gmin is more difficult to compute than G(3)
because the underlying “redundancy detection” problem is not strictly polyno-
mial in system size, although practical algorithms exist [27]. However, G(3) can
be pruned of redundant constraints that correspond to pairs of spheres i and
j that are prevented from lifting by other spheres. For example, given arrows
[i→j], [j→k] and [i→k], the latter can be “first-order” pruned (eliminated with
one intermediary, namely j) if bij + bjk > bik (in Fig. 5, [i→j+] can be pruned
for this reason). The presence of the arrow [j→k] is not necessary to make this
argument work (see Fig. 5b). Pruning can be taken to higher orders. To second
order, if bij + bjk + bkl > bil, then the arrow [i→l] can be eliminated. Finally,
any arrow [i→j] in Gv can be pruned through symmetrization if it is unmatched
by [j→i] in G−v because Gmin

v ≡ Gmin
−v , with G[v] and G[−v] obtained separately

15

(see Remark 3).
Rarely, arrows can be eliminated by symmetrizing graphs that were pruned

to third or fourth order, and constraint graphs that are obtained in this way
appear close to Gmin (see Section 3.2).

Code availability. The constraint graph G(3) is constructed in GenerateG3.py

and pruned to G in PruneG.py. The program GraphValidateCellECMC.cc runs
cell-based ECMC to verify the consistency of G.

a b() () ()c

Figure 6: ECMC constraint graphs for C256 (see Section 3.2 for definition). (a): G(3) for this
configuration (detail), with highlighted non-local arrows. (b): G256 (same detail), obtained
from G(3) through fourth-order pruning followed by symmetrization. (c): Number of solicited
arrows in G256 in a long cell-based ECMC run, compared to its average outdegree.

3.2. Validation

Our programs apply to arbitrary density η = Nπσ2/L2 and linear size L
of the periodic square box (with N = M2). We provide sets of configurations
and constraint graphs for validation and benchmarking. One such set consists
in a configuration C256 at M = 256, and for η = 0.708 and a fourth-order sym-
metrized constraint graph G256. Where applicable, the number of active spheres
varies as k = 1, 2, 4, . . . , kmax and the number of threads as nι = 1, 2, 3, . . . , nmax

ι .
For fixed k and nι, there are nrun runs that vary h and h′.

Constraint-graph validation. Constraint graphs are generated in the Setup.sh

script. The GraphValidateCellECMC test performs cell-based ECMC derived
from CellECMC.f90 [3, 23], where spheres are assigned to local cells and
neighborhood-cell searches identify possible liftings. Cell-based ECMC must
exclusively solicit liftings accounted for in G. The GraphValidateCellECMC

test also records the sweep (lifting per sphere) at which an arrow [i→j] ∈ G is
first solicited in a lifting and compares the time evolution of the average number
of solicited arrows with its average outdegree. The G256 constraint graph passes
the validation test with t = 2×107 sweeps. The outdegree of G256 is 2.1, and 98.7
% of its arrows are solicited during the test. Logarithmic extrapolation (with
1/(ln t)

α
, α = 1.7) suggests that G256 essentially agrees with Gmin (see Fig. 6c).

16

Use of G256 rather than G(3) speeds up ECMC, but further performance gains
through additional pruning are certainly extremely limited.

Validation of Algs 4 and 6. Our implementations of Algorithms 4 and 6 are
modified as discussed in Remark 7. Runs compute the set Lt∗ to the earliest
horizon-violation time t∗ (with t∗ = h′ if the run concludes successfully). The
PValidateECMC.sh test first advances C256 = Ct=0 to a random breakpoint h
(using Lref). Each test run is in the interval [h, h′], where h′ is randomly chosen.
To pass the validation test, Lt∗ must for each run agree with Lref (see Section 4
for details of scripts used). Algorithm 4 passes the PValidateECMC.sh test with
nrun = 1×103 for kmax = 8192.

Our x86 computer has two Xeon Gold 6230 CPUs with variable frequency
from 2.1 GHz to 3.9 GHz, each with 20 cores and 40 hardware threads. We
use OpenMP directives to restrict all threads to a single CPU. We consider
again C256 = Ct=0 as the initial configuration, and then run the program from
h to h′. On our x86 CPU, Algorithm 6 passes the CValidateECMC.sh test with
nrun = 1×103, kmax = 8192 and nmax

ι = 40.
On our ARM CPU (Nvidia Jetson with Cortex A57 CPU (at 1.43 GHz) with

four cores and four hardware threads), we again consider C256 = Ct=0 as initial
configuration. For the same system parameters as above, Algorithm 6 passes
the CValidateECMC.sh test with nrun = 1×103, kmax = 8192 and nmax

ι = 4. The
ARM architecture allows dynamic re-ordering of operations, and the separate
validation test more severely scrutinizes thread interactions than for the x86
CPU.

On both CPUs, Algorithm 6 passes the CValidateECMC.sh test with the
following choices of memory_order directives:

memory_order_relaxed. This most permissive memory ordering of the C++
memory model imposes no constraints on compiler optimization or dy-
namic re-ordering of operations by the processors, and only guarantees
the atomic nature of the CAS operation. Such re-orderings are more ag-
gressive on ARM CPUs than on x86 CPUs. This memory ordering does
not guarantee that the statements constituting the lock-less lock are exe-
cuted as required (see Remark 12).

memory_order_seq_cst for all memory operations on the tag attribute. This
directive imposes the sequential-consistency model (see Remark 12) for
each access of the tag attribute. It slows down the code by 40% compared
to the memory_order_relaxed directive.

memory_order_acquire on load, memory_order_release on store. This di-
rective implies “acquire–release” semantics on the tag attribute. It im-
poses a lock-free exchange at each operation on the tag attribute, so that
all variables, including positions and local times, are synchronized be-
tween threads during tag access. CAS remains memory_order_seq_cst.
This directive maintains speed compared to memory_order_relaxed, yet
provides better guarantees on the propagation of variable modification

17

between threads. MultiThreadECMC.cc compiles by default with this di-
rective.

3.3. Benchmarks for Algorithm 6 (x86 and ARM)

Algorithm 6 is modified as discussed in Remark 7 (program execution contin-
ues in spite of horizon violations) and used for large values of h′. This measures
the net cost of steady-state thread interaction, without taking into account
thread-setup times. We report here on results of the BenchmarkECMC.sh script
for C256 as an initial configuration and G256 with k = 40 active spheres. The
number of threads varies as nι = 1, 2, 3, . . . , nmax

ι , with nrun = 20.
On our x86 CPU (see Section 3.2), the BenchmarkECMC.sh script is parame-

trized with nmax
ι = 40. The benchmark speed increases roughly linearly up to

20 threads (reaching a speed-up of 10 for 20 threads), and then keeps improving
more slowly with a maximum for 40 threads at a speed-up of 14 and an absolute
speed of ∼ 1.6×1012 events/hour (see Fig. 7). The variable frequency of Xeon
processors under high load may contribute to this complex behavior. On a single
thread, our program runs 2.2 times slower than an unthreaded code, due to the
eliminated overhead from threading constructs. The original CellECMC.f90 cell-
based production code generates 3×1010 events/hour. The use of a constraint
graph, rather than a cell-based search, thus improves performance by almost an
order of magnitude, if the set-up of G is not accounted for.

On our ARM CPU, the BenchmarkECMC.sh script is parametrized with
nmax
ι = 4. The benchmark speed increases as the number of threads, reach-

ing a speed-up of 3.8 for nι = 4. The absolute speed is about six times smaller
than for our x86 CPU for a comparable number of threads, as may be expected
for a low-power processor designed for use in mobile phones.

3.4. Birthday problem, full ECMC, multi-CPU extensions

In this section, we treat some practical aspects for the use of Algorithm 6.

Birthday problem. We analyze multithreaded ECMC in terms of the (gener-
alized) birthday problem, which considers the probability p that two among
k′ integers (modeling individuals) sampled from a discrete uniform distribu-
tion in the set {1, 2, . . . , N ′} (modeling birthdays) are the same. For large N ′,
p ∼ [1− exp (−k′2/(2N ′))] [28], which is small if k′ .

√
N ′. At constant density

η, sphere radius σ, velocity v, and time interval h′ − h, each active chain ι is
almost restricted to a region of constant area, whereas the total area of the
simulation box is ηN . We may suppose that the k active spheres are randomly
positioned in the simulation box broken up into a grid of ∝ N constant-area
cells. For k .

√
N , we expect the probability that one of these cells contains two

active spheres to remain constant for N →∞, and therefore also the probability
of an update-order violation for constant h′ − h.

18

1 5 10 20 40
of physical threads (OMP_NUM_THREADS)

1.1e+11
2.4e+11
3.2e+11

6.3e+11

1.1e+12

1.6e+12

Ab
so

lu
te

 sp
ee

d
(e

ve
nt

s/
ho

ur
)

Multi-thread x86
Serial x86 (single-thread code)

1 4# of thr.
1.2e+10

4.7e+10

Ab
s.

sp
. ARM

2.2
1.0

2.9

5.7

10.3

14.3

Re
la

tiv
e

sp
ee

d

1.0

3.8

Re
l.

sp
.

Figure 7: Output of the BenchmarkECMC.sh script for Algorithm 6 (five-number summary of
20 runs) for k = 80 on an x86 CPU with 20 cores and 1, . . . , 40 threads, and for serial code
that processes active chains sequentially. Inset: Output of the script for a four-core ARM
CPU.

Restarts. Our algorithms reproduce output of Algorithm 2 only if they do not
abort. In production code, the effects of horizon violations will have to be re-
paired. Two strategies appear feasible. First, the algorithm may restart the
run from a copy of {Ch,Ah} at the initial breakpoint h, and choose a smaller
breakpoint h′′, for example the time of abort. The successful termination of
this restart is not guaranteed, as the individual threads may organize differ-
ently. Second, the time evolution may be reconstructed from Lt∗ to the earliest
horizon-violation time t∗ (see Remark 7), and t∗ may then be used as the sub-
sequent initial breakpoint. Besides an efficient restart strategy, a multithreaded
production code will also need an efficient parallel algorithm for computing G
after a change of v.

Multi-CPU implementations. Algorithm 6 is spelled out for a single shared-
memory CPU and for threads that may access attributes of all spheres (see
statement 10ι in Algorithm 5 and Remark 11). However, thread interactions
are local and immutable in between breakpoints (as evidenced by the constraint
graphs). This invites generalizations of the algorithm to multiple CPUs (each
of them with many threads). Most simply, two CPUs could administer disjoint
parts of the constraint graph, for example with interface vertices doubled up on
both of them (see Fig. 8). In this way, an active sphere arriving at an interface
would simply be copied out to the neighboring CPU. The generalization to
multiple CPUs appears straightforward.

19

Figure 8: A constraint graph doubled up for a multi-CPU implementation of Alg. 6 (detail of
C256 configuration shown). Interface vertices appear on both sides.

4. Available computer code

All implemented algorithms and used scripts that are made available on
GitHub in ParaSpheres, a public repository which is part of a public GitHub
organization.5 Code is made available under the GNU GPLv3 license (for details
see the LICENSE file).

The repository can be forked (that is, copied to an outside user’s own public
repository) and from there studied, modified and run in the user’s local environ-
ment. Users may contribute to the ParaSpheres project via pull requests (see
the README.md and CONTRIBUTING.md files for instructions and guidelines). All
communication (bug reports, suggestions) take place through GitHub “Issues”,
that can be opened in the repository by any user or contributor, and that are
classified in GitHub projects.

Implemented algorithms. The following programs are located in the directory
tree under their language (F90, Python or CPP) and in similarly named subdi-
rectories, that all contain README files for further details. Some of the longer
programs are split into modules.

Code/Directory Algorithm / Usage
CellECMC.f90 Cell-based production ECMC [3]
GenerateG3.py Generate G(3) (Section 3.1)
PruneG.py Prune G (Section 3.1)
GraphValidateCellECMC.cc Validate G against cell-based ECMC
GlobalTimeECMC.py Alg. 2 (Section 2.1)
SingleThreadLocalTimeECMC.py Alg. 4 (Section 2.2)
SequentialMultiThreadECMC.py Alg. 5 (Section 2.3)
MultiThreadECMC.cc Alg. 6 (Section 2.4)

5The organization’s url is https://github.com/jellyfysh.

20

Scripts and validation suites. The Scripts directory provides the following
bash scripts to compile and run groups of programs and to reproduce all our
results:

Script Summary of usage
Setup.sh Prepare Ct=0, G, Lref

SequentialC4.sh Test suite for Alg. 5 with N = 4
SequentialC5.sh Test suite for Alg. 5 with N = 5 (see Remark 12)
Ordering.sh Test suite for Alg. 6 with N = 5 (see Remark 12)
ValidateG.sh Validate constraint graph
PValidateECMC.sh Validate Alg. 4 against Lref

CValidateECMC.sh Validate Alg. 6 against Lref

BenchmarkECMC.sh Benchmark MultiThreadECMC.cc, generate Fig. 7

In the Setup.sh script, CellECMC.f90 first produces an sample C0 such
that the unidirectional dynamics in C0 is practically aperiodic. It then gener-
ates G(3) with GenerateG3.py, and runs PruneG.py to output G. Finally, it
runs GlobalTimeECMC.py for each set A0, in order to generate generate sev-
eral Lref. The ValidateG.sh script uses GraphValidateCellECMC.cc to run
cell-based ECMC, and verifies that all liftings are accounted for in G. It also
tracks the solicitation of arrows as a function of time. The PValidateECMC.sh

script validates SingleThreadLocalTimeECMC.py by comparing the sets of lift-
ings with Lref from Setup.sh. The CValidateECMC.sh script does the same for
MultiThreadECMC.cc. BenchmarkECMC.sh benchmarks MultiThreadECMC.cc

for different numbers of threads. The test suites are concerned with small-N
configurations.

5. Conclusions and outlook

In this paper, we presented an event-driven multithreaded ECMC algorithm
for hard spheres which enforces thread synchronization at infrequent breakpoints
only. Between breakpoints, spheres carry and update local times. Possible in-
consistencies are locally detected through a horizon condition. Within ECMC,
our method avoids the scheduling problem that has historically plagued event-
driven molecular dynamics. This is possible because in ECMC only few spheres
move at any moment, and all have the same velocity. Conflicts are thus ex-
ceptional, and little information is exchanged between threads. We relied on
the generalized birthday problem to show that our algorithm remains viable
up to a number of threads that grows as the square root of the number of
spheres, a setting relevant for the simulation of millions of spheres for modern
commodity servers with ∼ 100 threads. The mapping of Algorithm 5 onto an
absorbing Markov chain allowed us to prove its correctness (for a given lifted
initial configuration) and to rigorously analyze side effects of code re-orderings
in the multithreaded C++ code.

Our algorithm is presently implemented between two global breakpoint times,
where it achieves considerable speed-up with respect to sequential ECMC. A

21

fully practical multithreaded ECMC code that greatly outperforms cell-based
algorithms appears within reach. It is still a challenge to understand whether
multithreaded ECMC applies to general interacting-particle systems.

Acknowledgements

W.K. acknowledges support from the Alexander von Humboldt Foundation.
We thank E. P. Bernard for allowing his original hard-sphere ECMC production
code to be made available.

References

[1] E. P. Bernard, W. Krauth, D. B. Wilson, Event-chain Monte Carlo al-
gorithms for hard-sphere systems, Phys. Rev. E 80 (2009) 056704. doi:

10.1103/PhysRevE.80.056704.
URL http://link.aps.org/doi/10.1103/PhysRevE.80.056704

[2] M. Michel, S. C. Kapfer, W. Krauth, Generalized event-chain Monte
Carlo: Constructing rejection-free global-balance algorithms from infinites-
imal steps, J. Chem. Phys. 140 (5) (2014) 054116. arXiv:1309.7748,
doi:10.1063/1.4863991.

[3] E. P. Bernard, W. Krauth, Two-Step Melting in Two Dimensions: First-
Order Liquid-Hexatic Transition, Phys. Rev. Lett. 107 (2011) 155704. doi:
10.1103/PhysRevLett.107.155704.
URL http://link.aps.org/doi/10.1103/PhysRevLett.107.155704

[4] S. C. Kapfer, W. Krauth, Two-Dimensional Melting: From Liquid-Hexatic
Coexistence to Continuous Transitions, Phys. Rev. Lett. 114 (2015) 035702.
doi:10.1103/PhysRevLett.114.035702.
URL http://link.aps.org/doi/10.1103/PhysRevLett.114.035702

[5] M. Hasenbusch, S. Schaefer, Testing the event-chain algorithm in asymp-
totically free models, Phys. Rev. D 98 (2018) 054502. doi:10.1103/

PhysRevD.98.054502.
URL https://link.aps.org/doi/10.1103/PhysRevD.98.054502

[6] E. P. Bernard, W. Krauth, Addendum to “Event-chain Monte Carlo al-
gorithms for hard-sphere systems”, Physical Review E 86 (1). doi:

10.1103/physreve.86.017701.
URL https://doi.org/10.1103/physreve.86.017701

[7] S. C. Kapfer, W. Krauth, Irreversible Local Markov Chains with Rapid
Convergence towards Equilibrium, Phys. Rev. Lett. 119 (2017) 240603.
doi:10.1103/PhysRevLett.119.240603.
URL https://link.aps.org/doi/10.1103/PhysRevLett.119.240603

22

[8] M. F. Faulkner, L. Qin, A. C. Maggs, W. Krauth, All-atom computations
with irreversible Markov chains, The Journal of Chemical Physics 149 (6)
(2018) 064113. doi:10.1063/1.5036638.
URL https://doi.org/10.1063/1.5036638

[9] J. Harland, M. Michel, T. A. Kampmann, J. Kierfeld, Event-chain Monte
Carlo algorithms for three- and many-particle interactions, EPL (Euro-
physics Letters) 117 (3) (2017) 30001.
URL http://stacks.iop.org/0295-5075/117/i=3/a=30001

[10] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller,
Equation of State Calculations by Fast Computing Machines, J. Chem.
Phys. 21 (1953) 1087–1092. doi:10.1063/1.1699114.

[11] B. J. Alder, T. E. Wainwright, Phase Transition for a Hard Sphere System,
J. Chem. Phys. 27 (1957) 1208–1209. doi:10.1063/1.1743957.

[12] B. J. Alder, T. E. Wainwright, Studies in Molecular Dynamics. I. General
Method, J. Chem. Phys. 31 (1959) 459–466. doi:10.1063/1.1730376.

[13] D. C. Rapaport, The Event Scheduling Problem in Molecular Dynamic
Simulation, Journal of Computational Physics 34 (1980) 184–201. doi:

10.1016/0021-9991(80)90104-7.

[14] M. Isobe, Hard sphere simulation in statistical physics methodologies and
applications, Molecular Simulation 42 (16) (2016) 1317–1329. doi:10.

1080/08927022.2016.1139106.

[15] B. D. Lubachevsky, Simulating billiards serially and in parallel, Interna-
tional Journal in Computer Simulation 2 (1992) 373–411.

[16] B. Lubachevsky, Several unsolved problems in large-scale discrete event
simulations, ACM SIGSIM Simulation Digest 23 (1993) 60–67. doi:10.

1145/174134.158467.

[17] A. G. Greenberg, B. D. Lubachevsky, I. Mitrani, Superfast parallel discrete
event simulations, ACM Transactions on Modeling and Computer Simula-
tion (TOMACS) 6 (2) (1996) 107–136.

[18] A. T. Krantz, Analysis of an efficient algorithm for the hard-sphere prob-
lem, ACM Trans. Model. Comput. Simul. 6 (3) (1996) 185–209. doi:

10.1145/235025.235030.

[19] M. Marin, Billiards and related systems on the bulk-synchronous parallel
model, in: Proceedings 11th Workshop on Parallel and Distributed Simu-
lation, 1997, pp. 164–171. doi:10.1109/PADS.1997.594602.

[20] S. Miller, S. Luding, Event-driven molecular dynamics in parallel, Jour-
nal of Computational Physics 193 (1) (2004) 306 – 316. arXiv:physics/

0302002, doi:10.1016/j.jcp.2003.08.009.

23

[21] P. Diaconis, S. Holmes, R. M. Neal, Analysis of a nonreversible Markov
chain sampler, Annals of Applied Probability 10 (2000) 726–752.

[22] D. A. Levin, Y. Peres, E. L. Wilmer, Markov Chains and Mixing Times,
American Mathematical Society, 2008.

[23] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard,
W. Krauth, Hard-disk equation of state: First-order liquid-hexatic tran-
sition in two dimensions with three simulation methods, Phys. Rev. E 87
(2013) 042134. doi:10.1103/PhysRevE.87.042134.
URL http://link.aps.org/doi/10.1103/PhysRevE.87.042134

[24] Lamport, How to Make a Multiprocessor Computer That Correctly Exe-
cutes Multiprocess Programs, IEEE Transactions on Computers C-28 (9)
(1979) 690–691. doi:10.1109/tc.1979.1675439.

[25] H. J. Boehm, L. Crowl, C++ atomic types and operations, http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html (2009).

[26] S. C. Kapfer, W. Krauth, Sampling from a polytope and hard-disk Monte
Carlo, Journal of Physics: Conference Series 454 (1) (2013) 012031. doi:

10.1088/1742-6596/454/1/012031.
URL http://stacks.iop.org/1742-6596/454/i=1/a=012031

[27] K. Fukuda, B. Gärtner, M. Szedlák, Combinatorial redundancy detec-
tion, Annals of Operations Research 265 (1) (2016) 47–65. doi:10.1007/

s10479-016-2385-z.

[28] F. H. Mathis, A generalized birthday problem, SIAM Review 33 (2) (1991)
265–270. doi:10.1137/1033051.

24

