The R-mAtrIx Net - Université PSL (Paris Sciences & Lettres)
Article Dans Une Revue Machine Learning: Science and Technology Année : 2024

The R-mAtrIx Net

Résumé

We provide a novel Neural Network architecture that can: i) output R-matrix for a given quantum integrable spin chain, ii) search for an integrable Hamiltonian and the corresponding R-matrix under assumptions of certain symmetries or other restrictions, iii) explore the space of Hamiltonians around already learned models and reconstruct the family of integrable spin chains which they belong to. The neural network training is done by minimizing loss functions encoding Yang-Baxter equation, regularity and other model-specific restrictions such as hermiticity. Holomorphy is implemented via the choice of activation functions. We demonstrate the work of our Neural Network on the two-dimensional spin chains of difference form. In particular, we reconstruct the R-matrices for all 14 classes. We also demonstrate its utility as an \textit{Explorer}, scanning a certain subspace of Hamiltonians and identifying integrable classes after clusterisation. The last strategy can be used in future to carve out the map of integrable spin chains in higher dimensions and in more general settings where no analytical methods are available.
Fichier principal
Vignette du fichier
Lal_2024_Mach._Learn.__Sci._Technol._5_035003.pdf (2.67 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04092128 , version 1 (10-09-2024)

Licence

Identifiants

Citer

Shailesh Lal, Suvajit Majumder, Evgeny Sobko. The R-mAtrIx Net. Machine Learning: Science and Technology, 2024, 5 (3), pp.035003. ⟨10.1088/2632-2153/ad56f9⟩. ⟨hal-04092128⟩
45 Consultations
2 Téléchargements

Altmetric

Partager

More