The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background - Université PSL (Paris Sciences & Lettres) Access content directly
Journal Articles The Astrophysical journal letters Year : 2021

The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background

Zaven Arzoumanian
  • Function : Author
Paul T. Baker
  • Function : Author
Harsha Blumer
  • Function : Author
Bence Becsy
  • Function : Author
Adam Brazier
  • Function : Author
Paul R. Brook
  • Function : Author
Sarah Burke-Spolaor
  • Function : Author
Maria Charisi
  • Function : Author
Shami Chatterjee
  • Function : Author
James M. Cordes
  • Function : Author
Neil J. Cornish
  • Function : Author
Fronefield Crawford
  • Function : Author
H. Thankful Cromartie
  • Function : Author
Megan E. Decesar
  • Function : Author
Dallas M. Degan
  • Function : Author
Paul B. Demorest
  • Function : Author
Timothy Dolch
  • Function : Author
Brendan Drachler
  • Function : Author
Justin A. Ellis
  • Function : Author
Elizabeth C. Ferrara
  • Function : Author
William Fiore
  • Function : Author
Emmanuel Fonseca
  • Function : Author
Nathan Garver-Daniels
  • Function : Author
Peter A. Gentile
  • Function : Author
Deborah C. Good
  • Function : Author
Jeffrey S. Hazboun
  • Function : Author
A. Miguel Holgado
  • Function : Author
Kristina Islo
  • Function : Author
Ross J. Jennings
  • Function : Author
Megan L. Jones
  • Function : Author
Andrew R. Kaiser
  • Function : Author
David L. Kaplan
  • Function : Author
Luke Zoltan Kelley
  • Function : Author
Joey Shapiro Key
  • Function : Author
Nima Laal
  • Function : Author
Michael T. Lam
  • Function : Author
T. Joseph W. Lazio
  • Function : Author
Duncan R. Lorimer
  • Function : Author
Tingting Liu
  • Function : Author
Jing Luo
  • Function : Author
Ryan S. Lynch
  • Function : Author
Dustin R. Madison
  • Function : Author
Alexander Mcewen
  • Function : Author
Maura A. Mclaughlin
  • Function : Author
Chiara M.F. Mingarelli
  • Function : Author
Cherry Ng
  • Function : Author
David J. Nice
  • Function : Author
Ken D. Olum
  • Function : Author
Timothy T. Pennucci
  • Function : Author
Nihan S. Pol
  • Function : Author
Scott M. Ransom
  • Function : Author
Paul S. Ray
  • Function : Author
Joseph D. Romano
  • Function : Author
Shashwat C. Sardesai
  • Function : Author
Brent J. Shapiro-Albert
  • Function : Author
Xavier Siemens
  • Function : Author
Joseph Simon
  • Function : Author
Magdalena S. Siwek
  • Function : Author
Renee Spiewak
  • Function : Author
Ingrid H. Stairs
  • Function : Author
Daniel R. Stinebring
  • Function : Author
Kevin Stovall
  • Function : Author
Jerry P. Sun
  • Function : Author
Joseph K. Swiggum
  • Function : Author
Stephen R. Taylor
  • Function : Author
Jacob E. Turner
  • Function : Author
Michele Vallisneri
  • Function : Author
Sarah J. Vigeland
  • Function : Author
Haley M. Wahl
  • Function : Author
Caitlin A. Witt
  • Function : Author

Abstract

We search NANOGrav’s 12.5 yr data set for evidence of a gravitational-wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor-transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the solar system ephemeris systematics and/or remove pulsar J0030+0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index of γ = 5 and a reference frequency of f $_{yr}$ = 1 yr$^{−1}$. Among the upper limits for eight general families of metric theories of gravity, we find the values of and for the family of metric spacetime theories that contain both TT and ST modes.
Fichier principal
Vignette du fichier
Arzoumanian_2021_ApJL_923_L22.pdf (1.8 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03388145 , version 1 (23-03-2023)

Identifiers

Cite

Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Bence Becsy, Adam Brazier, et al.. The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background. The Astrophysical journal letters, 2021, 923 (2), pp.L22. ⟨10.3847/2041-8213/ac401c⟩. ⟨hal-03388145⟩
82 View
11 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More